Surfactant-Influenced Gas-Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities.

نویسندگان

  • Lopez
  • Hirsa
چکیده

A canonical flow geometry was utilized for a fundamental study of the coupling between bulk flow and a Newtonian gas-liquid interface in the presence of an insoluble surfactant. We develop a Navier-Stokes numerical model of the flow in the deep-channel surface viscometer geometry, which consists of stationary inner and outer cylinders, a floor rotating at a constant angular velocity, and an interface covered initially by a uniformly distributed surfactant. Here, the floor of the annular channel is rotated fast enough so the flow is nonlinear and drives the film toward the inner cylinder. The boundary conditions at the interface are functions of the surface tension, surface shear viscosity, and surface dilatational viscosity, as described by the Boussinesq-Scriven surface model. A physical surfactant system, namely hemicyanine, an insoluble monolayer on an air-water interface, with measured values of surface tension and surface shear viscosity versus concentration, was used in this study. We find that a surfactant front can form, depending on the Reynolds number and the initial surfactant concentration. The stress balance in the radial direction was found to be dominated by the Marangoni stress, but the azimuthal stress was only due to the surface shear viscosity. Numerical studies are presented comparing results of surfactant-influenced interface cases implementing the derived viscoelastic interfacial stress balance with those using a number of idealized stress balances, as well as a rigid no-slip surface, providing added insight into the altered dynamics that result from the presence of a surfactant monolayer. Copyright 2000 Academic Press.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Determination of the Dependence of the Surface Shear and Dilatational Viscosities on the Thermodynamic State of the Interface: Theoretical Foundations.

Recent developments in nonlinear optical techniques for noninvasive probing of a surfactant influenced gas/liquid interface allow for the measurement of the surfactant surface concentration, c, and thus provide new opportunities for the direct determination of its intrinsic viscosities. Here, we present the theoretical foundations, based on the Boussinesq-Scriven surface model without the usual...

متن کامل

Oscillatory Driven Cavity with an Air/ Water Interface and an InsolubleMonolayer: Surface Viscosity Effects

Flow in a planar cavity bounded by stationary side walls, a flat gas/liquid interface covered by an insoluble monolayer, and driven by sinusoidal motion of the floor is examined numerically. Navier– Stokes computations with the Boussinesq–Scriven surface model are presented utilizing the equation-of-state measured for a vitamin K1 monolayer on the air/water interface. The results identify a ran...

متن کامل

N ov 1 99 8 Equation of state of finite nuclei and liquid - gas phase transition

We construct the equation of state (EOS) of finite nuclei including surface and Coulomb effects in a Thomas-Fermi framework using a finite range, momentum and density dependent two-body interaction. We identify critical temperatures for nuclei below which the EOS so constructed shows clear signals for liquid-gas phase transition in these finite systems. Comparison with the EOS of infinite nucle...

متن کامل

Interaction and micellar behavior of aqueous mixtures of surface active ionic liquid and cationic surfactant: experimental and theoretical studies

The interaction between an ionic liquid (1-dodecyl-3-methylimidazolium bromide or IL) and cationic surfactant (dodecyltrimethylammonium bromide (DTAB)) in aqueous solution has been investigated at various mole fractions and temperature 30 ˚C using experimental and theoretical methods. The critical micelle concentration (CMC) of pure components and their binary mixtures, mixed micellar compositi...

متن کامل

Drainage of single Plateau borders: direct observation of rigid and mobile interfaces.

Foam drainage varies with surfactant. We present direct measurements of the flow velocity profiles across single Plateau borders, which make up the interconnected channel-like network for liquid flow. For protein foams the interface is rigid, whereas small-surfactant foams show significant interfacial mobility. The results agree with a model that takes into account the shearing of the liquid-ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 229 2  شماره 

صفحات  -

تاریخ انتشار 2000